724 research outputs found

    Fighting with the Sparsity of Synonymy Dictionaries

    Full text link
    Graph-based synset induction methods, such as MaxMax and Watset, induce synsets by performing a global clustering of a synonymy graph. However, such methods are sensitive to the structure of the input synonymy graph: sparseness of the input dictionary can substantially reduce the quality of the extracted synsets. In this paper, we propose two different approaches designed to alleviate the incompleteness of the input dictionaries. The first one performs a pre-processing of the graph by adding missing edges, while the second one performs a post-processing by merging similar synset clusters. We evaluate these approaches on two datasets for the Russian language and discuss their impact on the performance of synset induction methods. Finally, we perform an extensive error analysis of each approach and discuss prominent alternative methods for coping with the problem of the sparsity of the synonymy dictionaries.Comment: In Proceedings of the 6th Conference on Analysis of Images, Social Networks, and Texts (AIST'2017): Springer Lecture Notes in Computer Science (LNCS

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe

    Lysine-Rich Extracellular Rings Formed by hβ2 Subunits Confer the Outward Rectification of BK Channels

    Get PDF
    The auxiliary β subunits of large-conductance Ca2+-activated K+ (BK) channels greatly contribute to the diversity of BK (mSlo1 α) channels, which is fundamental to the adequate function in many tissues. Here we describe a functional element of the extracellular segment of hβ2 auxiliary subunits that acts as the positively charged rings to modify the BK channel conductance. Four consecutive lysines of the hβ2 extracellular loop, which reside sufficiently close to the extracellular entryway of the pore, constitute three positively charged rings. These rings can decrease the extracellular K+ concentration and prevent the Charybdotoxin (ChTX) from approaching the extracellular entrance of channels through electrostatic mechanism, leading to the reduction of K+ inflow or the outward rectification of BK channels. Our results demonstrate that the lysine rings formed by the hβ2 auxiliary subunits influences the inward current of BK channels, providing a mechanism by which current can be rapidly diminished during cellular repolarization. Furthermore, this study will be helpful to understand the functional diversity of BK channels contributed by different auxiliary β subunits

    Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G<sub>0</sub>), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS) has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose.</p> <p>Methods</p> <p>C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline). Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours.</p> <p>Results</p> <p>72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST) and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration.</p> <p>Conclusion</p> <p>RLS improves liver recovery from APAP hepatotoxicity.</p

    Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents

    Get PDF
    Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the macroscopic level

    Dimerization of Receptor Protein-Tyrosine Phosphatase alpha in living cells

    Get PDF
    BACKGROUND: Dimerization is an important regulatory mechanism of single membrane-spanning receptors. For instance, activation of receptor protein-tyrosine kinases (RPTKs) involves dimerization. Structural, functional and biochemical studies suggested that the enzymatic counterparts of RPTKs, the receptor protein-tyrosine phosphatases (RPTPs), are inhibited by dimerization, but whether RPTPs actually dimerize in living cells remained to be determined. RESULTS: In order to assess RPTP dimerization, we have assayed Fluorescence Resonance Energy Transfer (FRET) between chimeric proteins of cyan- and yellow-emitting derivatives of green fluorescent protein, fused to RPTPα, using three different techniques: dual wavelength excitation, spectral imaging and fluorescence lifetime imaging. All three techniques suggested that FRET occurred between RPTPα -CFP and -YFP fusion proteins, and thus that RPTPα dimerized in living cells. RPTPα dimerization was constitutive, extensive and specific. RPTPα dimerization was consistent with cross-linking experiments, using a non-cell-permeable chemical cross-linker. Using a panel of deletion mutants, we found that the transmembrane domain was required and sufficient for dimerization. CONCLUSIONS: We demonstrate here that RPTPα dimerized constitutively in living cells, which may be mediated by the transmembrane domain, providing strong support for the model that dimerization is involved in regulation of RPTPs

    Sacrificial-template-free synthesis of core-shell C@Bi2S3 heterostructures for efficient supercapacitor and H-2 production applications

    Get PDF
    Core-shell heterostructures have attracted considerable attention owing to their unique properties and broad range of applications in lithium ion batteries, supercapacitors, and catalysis. Conversely, the effective synthesis of Bi2S3 nanorod core@ amorphous carbon shell heterostructure remains an important challenge. In this study, C@Bi2S3 core-shell heterostructures with enhanced supercapacitor performance were synthesized via sacrificial-template-free one-pot-synthesis method. The highest specific capacities of the C@Bi2S3 core shell was 333.43 F g(-1) at a current density of 1 A g(-1). Core-shell-structured C@Bi2S3 exhibits 1.86 times higher photocatalytic H-2 production than the pristine Bi2S3 under simulated solar light irradiation. This core-shell feature of C@Bi2S3 provides efficient charge separation and transfer owing to the formed heterojunction and a short radial transfer path, thus efficiently diminishing the charge recombination; it also facilitates plenty of active sites for the hydrogen evolution reaction owing to its mesoporous nature. These outcomes will open opportunities for developing low-cost and noble-metal-free efficient electrode materials for water splitting and supercapacitor applications
    corecore